Exercise 12

For matrix A in the previous problem, find a nonzero $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=\mathbf{0}$.

Solution

In Problem 11

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 3 & 3
\end{array}\right]
$$

The aim is to find a three-dimensional vector,

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right],
$$

such that

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

This matrix equation implies the following system of equations.

$$
\left.\begin{array}{r}
x+2 y+3 z=0 \\
y+z=0 \\
3 y+3 z=0
\end{array}\right\}
$$

Notice that the second and third equations are equivalent. Solve either of them for y

$$
y=-z
$$

and plug it into the first equation.

$$
x+2(-z)+3 z=0
$$

Solve for x.

$$
x=-z
$$

As a result, any three-dimensional vector of the form

$$
\mathbf{x}=\left[\begin{array}{r}
-z \\
-z \\
z
\end{array}\right]=z\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]
$$

will work, where z is an arbitrary constant (a free variable). For example, choosing $z=1$ gives

$$
\mathbf{x}=\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]
$$

